نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد، گروه مدیریت تکنولوژی، دانشکده مدیریت و مهندسی صنایع، دانشگاه صنعتی مالک اشتر، تهران، ایران

2 کارشناسی ارشد، گروه مدیریت تکنولوژی، دانشکده مدیریت، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران، ایران.

چکیده

در بانکداری سنتی و کاغذی، افراد چون کاغذی را می دیدند و لمس می کردند، اعتماد ایجاد می شد. اما امروزه با حضور بانکداری الکترونیکی، از یک سو هنوز جامعه ایران با آن خو نگرفته و از سویی دیگر، نااطمینانی ها از عوامل اقتصادی موجب شده تا مشتریان بانک ها نسبت به سرمایه گذاری احساس تردید کنند. نااطمینانی در اقتصاد از مهمترین عوامل خروج سرمایه از بانک ها و از بین رفتن اعتماد مشتری است. مزایای بانکداری الکترونیک را می توان از دو جنبه مشتریان و موسسات مالی مورد توجه قرارداد. از دید مشتریان می توان به صرفه جویی در هزینه ها، صرفه جویی در زمان و دسترسی به کانالهای متعدد برای انجام عملیات بانکی نام برد. از دید موسسات مالی می توان به ویزگیهایی چون ایجاد و افزایش شهرت بانکها در ارائه نوآوری، حفظ مشتریان علی رغم تغییرات مکانی بانکها، ایجاد فرضت برای جست جوی مشتریان جدید در بازارهای هدف، گسترش محدوده جغرافیایی فعالیت و برقراری شرایط رقابت کامل را نام برد. برای رقابت مؤثرتر در بازارهای رقابتی دنیا بانک ها بایستی درک بهتری از مشتریان و بازار داشته باشند. صنعت بانکداری در دنیا تغییرات زیادی را در نحوه انجام فعالیت های خود متحمل شده است. بانک های پیشرو از ابزارهای داده کاوی برای تقسیم بندی مشتریان، اعتبارسنجی مشتریان جهت اعطای تسهیلات و تایید آنها، پیش بینی عدم پرداخت بدهی ها، بازاریابی و شناسایی الگوهای کلاهبرداری استفاده می کنند. در این مقاله ضمن اشاره ای به بحث نااطمینانی و تأثیر آن بر مشتریان، تکنیک های داده کاوی به عنوان مزیت رقابتی در رضایت مشتریان از بانکداری الکترونیکی و خدمات بانکی بیان می گردد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Designing a Model for Increasing Sales in E-Marketing of Electronic Banking Services By Data Mining

نویسندگان [English]

  • Manochehr Manteghi 1
  • saeed ghasempour 2

1 Professor, Department of Technology Management, Faculty of Industrial Management and Engineering, Malek Ashtar University of Technology, Tehran, Iran

2 M.Sc., Department of Technology Management, Faculty of Management, South Tehran Branch, Islamic Azad University, Tehran, Iran.

چکیده [English]

In traditional and paper banking, due to the fact that people were provided with a paper, and touched paper, the trust element was built. But nowadays, with the presence of electronic banking, on the one hand, the Iranian society is not yet accustomed to it, and on the other hand, uncertainties about economic factors have caused bank customers to feel hesitant about investing. Uncertainty in the economy is one of the most important factors in the outflow of capital from banks and the loss of customer trust. The benefits of e-banking can be considered from two aspects: customers and financial institutions. From customers' point of view, we can mention cost savings, time savings and access to multiple channels for banking operations. From the perspective of financial institutions, we can name features such as creating and increasing the reputation of banks in providing innovation, retaining customers despite the spatial changes of banks, creating the premise to seek new customers in target markets, expanding the geographical scope of activities and establishing full competition situation. To compete more effectively in the world's competitive markets, banks need to have a better understanding of customers and the market. The banking industry in the world has undergone many changes in the way it operates. Leading banks use data mining tools to segment customers, validate customers to approve and grant banking facilities, anticipate debt default, marketing affairs, and identify fraudulent patterns. In this article, while referring to the discussion of uncertainty and its impact on customers, data mining techniques are expressed as a competitive advantage in customer satisfaction with electronic banking and banking services.

کلیدواژه‌ها [English]

  • Electronic Banking
  • Uncertainty
  • Data Mining
  • Risk Management
  • Marketing
Abdelhamid, N.; Ayesh, A.; Thabtah, F. (2014). Phishing detection based associative classification data mining. Expert Syst. Appl, 41, 5948–5959. [CrossRef]
 Abellán, J.; Castellano, J.G. (2017). A comparative study on base classifiers in ensemble methods for credit scoring. Expert Syst. Appl, 73, 1–10.
Afolabi, I.T.; Ezenwoke, A.A.; Ayo, C.K. (2017). Competitive analysis of social media data in the banking industry. Int. J. Internet Market. Advert, 11, 183–201. [CrossRef]
Agrawal, R.; Imieli ´ nski, T.; Swami, A. (1993). Mining Association Rules between sets of items in large databases. In Proceedings of the ACM SIGMOD International Conference on Management of Data and ACM SIGMOD, Washington, DC, USA, 25–28 May 1; pp. 207–216.
 Akhilomen, J. (2013). Data mining application for cyber credit-card fraud detection system. In Proceedings of the Industrial Conference on Data Mining, New York, NY, USA, 16–21 July 2013; Springer: Berlin/Heidelberg, Germany, 2013; pp. 218–228.
Alaraj, M.; Abbod, M.F. (2016). A new hybrid ensemble credit scoring model based on classifiers consensus system approach. Expert Syst. Appl, 64, 36–55. [CrossRef]
Alaraj, M.; Abbod, M.F. (20164). Classifiers consensus system approach for credit scoring. Knowl.-Based Syst. 2016, 104, 89–105. [CrossRef]
Ali, O.G.; Ariturk, U. (2014). Dynamic churn prediction framework with more effective use of rare event data: The case of private banking. Expert Syst. Appl, 41, 7889–7903.
Amani, F.A.; Fadlalla, A.M. (2017). Data mining applications in accounting: A review of the literature and organizing framework. Int. J. Account. Inf. Syst, 24, 32–58. [CrossRef]
Amini, M.; Rezaeenour, J.; Hadavandi, E. (2015). A cluster-based data balancing ensemble classifier for response modeling in Bank Direct Marketing. Int. J. Comput. Intell. Appl, 14, 1550022. [CrossRef]
Azad, M.A.K. (2016). Predicting mobile banking adoption in Bangladesh: A neural network approach. Transnatl. Corp. Rev, 8, 207–214. [CrossRef]
Azimi, A.; Noor Hosseini, M. (2017). The hybrid approach based on genetic algorithm and neural network to predict financial fraud in banks. Int. J. Inf. Secur. Syst. Manag, 6, 657–667.
Bahari, T.F.; Elayidom, M.S. (2015). An efficient CRM-data mining framework for the prediction of customer behaviour. Procedia Comput. Sci, 46, 725–731. [CrossRef]
 Barman, D.; Shaw, K.K.; Tudu, A.; Chowdhury, N. (2016). Classification of Bank Direct Marketing Data Using Subsets of Training Data. In Information Systems Design and Intelligent Applications; Springer: New Delhi, India; pp. 143–151.
Batmaz, I.; Danisoglu, S.; Yazici, C.; Kartal-Koc, E. (2017). A data mining application to deposit pricing: Main determinants and prediction models. Appl. Soft Comput, 60, 808–819. [CrossRef]
Behera, T.K.; Panigrahi, S. (2017). Credit Card Fraud Detection Using a Neuro-Fuzzy Expert System. In Computational Intelligence in Data Mining; Springer: Singapore, 2017; pp. 835–843.
 Behera, T.K.; Panigrahi, S. (2015). Credit Card Fraud Detection: A Hybrid Approach Using Fuzzy Clustering & Neural Network. In Proceedings of the 2015 Second International Conference on Advances in Computing and Communication Engineering (ICACCE), Dehradun, India, 1–2; pp. 494–499.
Berry, M.; Linoff, G. (1999). Mastering Data Mining: The Art and Science of Customer Relationship Management; John Wiley & Sons: New York, NY, USA.
 Bhasin, M.L. (2015). Menace of frauds in the Indian banking industry: An empirical study. Aust. J. Bus. Manag. Res, 4, 1–13. [CrossRef]
 Bhattacharyya, S.; Jha, S.; Tharakunnel, K.; Westland, J.C. (2011). Data mining for credit card fraud: A comparative study. Decis. Support Syst, 50, 602–613. [CrossRef]
Bilal Zoric, A. (2016).  Predicting customer churn in banking industry using neural networks. Interdiscip. Descr. Complex Syst, 14, 116–124. [CrossRef]
Breiman, L.; Friedman, J.; Olshen, R.; Stone, C. (1984). Classification and Regression Trees; Belmont: Wadsworth, OH, USA, 1984.
Carminati, M.; Caron, R.; Maggi, F.; Epifani, I.; Zanero, S. (2014). BankSealer: An online banking fraud analysis and decision support system. In Proceedings of the IFIP International Information Security Conference, Marrakech, Morocco, 2–4 June 2014; Springer: Berlin/Heidelberg, Germany, 2014; pp. 380–394.
Chen, Y.; Shi, Y.; Lee, C.F.; Li, M.; Liu, Y. (2014). Measuring and Predicting Systemic Risk in the Chinese Banking System. In Proceedings of the 2014 IEEE International Conference on Data Mining Workshop (ICDMW), Shenzhen, China, 14 December 2014; pp. 55–59.
 Coumaros, J.; Buvat, J.; Auliard, O.; Roys, S.; Kvj, S.; Chretien, L.; Clerk, V. (2014). Big Data Alchemy: How can banks maximize the value of their customer data. In Banks Have Not Fully Exploited the Potential of Customer Data; Digital Transformation Research Institute and Capgemini Consulting: Paris, France, 2014. 107. Marous, J. Banking Industry Still Taking Small Steps with Big Data. The Financial Brand. 2017. Available online: https://thefinancialbrand.com/64166/banking-big-data-advanced-analytics-ai/ (accessed on 3 September 2017).
Danenas, P.; Garsva, G. (2015). Selection of support vector machines-based classifiers for credit risk domain. Expert Syst. Appl. 2015, 42, 3194–3204. [CrossRef]
Desai, D.B.; Kulkarni, R.V. (2013). A Review: Application of data mining tools in CRM for selected banks. Int. J. Comput. Sci. Inf. Technol, 4, 199–201.
 Devadiga, N.; Kothari, H.; Jain, H.; Sankhe, S. (2017). E-Banking Security using Cryptography, Steganography and Data Mining. Int. J. Comput. Appl, 164, 26–30. [CrossRef]
 Dreiseitl, S.; Ohno-Machado, L. (2002). Logistic regression and artificial neural network classification models: A methodology review. J. Biomed. Inform, 35, 352–359. [CrossRef]
 Elsalamony, H.A. (2017). Bank direct marketing analysis of data mining techniques. Int. J. Comput. Appl. 2014, 85, 12–22. [CrossRef] fuzzy approach. Glob. Financ. J, 35, 58–71. [CrossRef]
Gautam, P.; Singh, Y.P.; Shaikh, P. (2017). Significance and Importance of Data Mining for Marketing Analysis in Finance, Banking Sectors. Int. J. Appl. Res. Sci. Eng, 26–29. Available online: http://ijarse.org/images/ scripts/201706.pdf (accessed on 9 September 2017).
Harris, T. (2015). Credit scoring using the clustered support vector machine. Expert Syst. Appl., 42, 741–750. [CrossRef]
 Hasheminejad, S.M.; Salimi, Z. FDiBC: (2018). A Novel Fraud Detection Method in Bank Club based on Sliding Time and Scores Window. J. AI Data Min. 2018, 6, 219–231
Hassani, H.; Huang, X.; Ghodsi, M. (2018). Big Data and Causality. Ann. Data Sci., 5, 133–156. [CrossRef]
Hassani, H.; Huang, X.; Silva, E.S.; Ghodsi, M. (2016). A review of data mining applications in crime. Stat. Anal. Data Min. ASA Data Sci. J., 9, 139–154. [CrossRef]
Hassani, H.; Saporta, G.; Silva, E.S. (2014). Data Mining and Official Statistics: The past, the present and the future. Big Data, 2, 34– [CrossRef] [PubMed]
Hassani, H.; Silva, E.S. Big Data: (2018). a big opportunity for the petroleum and petrochemical industry. OPEC Energy Rev., 42, 74–89. [CrossRef]
He, B.; Shi, Y.; Wan, Q.; Zhao, X. (2014). Prediction of customer attrition of commercial banks based on SVM model. Procedia Comput. Sci., 31, 423–430. [CrossRef]
He, W.; Tian, X.; Shen, J. (2015). Examining Security Risks of Mobile Banking Applications through Blog Mining. In Proceedings of the 26th Modern Artificial Intelligence and Cognitive Science Conference (MAICS), Greensboro, CA, USA, 25–26 April; pp. 103–108.
 Hegazy, M.; Madian, A.; Ragaie, M. (2016). Enhanced Fraud Miner: Credit Card Fraud Detection using Clustering Data Mining Techniques. Egypt. Comput. Sci. J., 40, 72–81.
 Herrera-Restrepo, O.; Triantis, K.; Seaver, W.L.; Paradi, J.C.; Zhu, H. (2016). Bank branch operational performance: A robust multivariate and clustering approach. Expert Syst. Appl., 50, 107–119. [CrossRef]
Jayasree, V.; Balan, R.S. (2017). Money laundering regulatory risk evaluation using Bitmap Index-based Decision Tree. J. Assoc. Arab Univ. Basic Appl. Sci., 23, 96–102. [CrossRef]
Jayasree, V.; Balan, R.V.S. (2013). A review on data mining in banking sector. Am. J. Appl. Sci., 10, 1160. [CrossRef]
 John, S.N.; Anele, C.; Kennedy, O.O.; Olajide, F.; Kennedy, C.G. Realtime fraud detection in the banking sector using data mining techniques/algorithm. In Proceedings of the 2016 International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 15–17 December 2016; pp. 1186–1191.
Keramati, A.; Ghaneei, H.; Mirmohammadi, S.M. (2016). Developing a prediction model for customer churn from electronic banking services using data mining. Financ. Innov, 2, 10. [CrossRef]
Kharote, M.; Kshirsagar, V.P. (2014). Data mining model for money laundering detection in financial domain. Int. J. Comput. Appl., 85, 61–64. [CrossRef]
 Kirkos, E.; Spathis, C.; Manolopoulos, Y. (2007). Data mining techniques for the detection of fraudulent financial statements. Expert Syst. Appl, 32, 995–1003. [CrossRef]
 Koh, H.C.; Tan, W.C.; Goh, C.P. (2006). A two-step method to construct credit scoring models with data mining techniques. Int. J. Bus. Inf, 1, 96–118.
 Koutanaei, F.N.; Sajedi, H.; Khanbabaei, M. (2015). A hybrid data mining model of feature selection algorithms and ensemble learning classifiers for credit scoring. J. Retail. Consum. Serv., 27, 11–23. [CrossRef]
 Lagazio, M.; Sherif, N.; Cushman, M. (2017). A multi-level approach to understanding the impact of cyber-crime on the financial sector. Comput. Secur, 45, 58–74. [CrossRef]
Lahmiri, S. (2017). A two-step system for direct bank telemarketing outcome classification. Intell. Syst. Account. Financ. Manag. 2017, 24, 49–55. [CrossRef] Big Data Cogn. Comput. 2018, 2, 18 12 of 13 65. Shih, J.Y.; Chen, W.H.; Chang, Y.J. Developing target marketing models for personal loans. In Proceedings of the 2014 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Bandar Sunway, Malaysia, 9–14 December 2014; pp. 1347–1351.
Langley, P.; Iba,W.; Thompson, K. (1992). An analysis of Bayesian classifiers. In Proceedings of the Tenth National Conference on Artificial Intelligence, San Jose, CA, USA, 12–16; Volume 90, pp. 223–228.
Lessmann, S.; Baesens, B.; Seow, H.V.; Thomas, L.C. (2015). Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research. Eur. J. Oper. Res, 247, 124–136. [CrossRef]
Li, H.; Zhang, Y.; Zhang, N.; Jia, H. (2016). Detecting the Abnormal Lenders from P2P Lending Data. Procedia Comput. Sci, 91, 357–361. [CrossRef]
 Liebana-Cabanillas, F.; Nogueras, R.; Herrera, L.J.; Guillén, A. (2013).  Analysing user trust in electronic banking using data mining methods. Expert Syst. Appl, 40, 5439–5447. [CrossRef]
Louzada, F.; Ara, A.; Fernandes, G.B. (2016). Classification methods applied to credit scoring: Systematic review and overall comparison. Surv. Oper. Res. Manag. Sci, 21, 117–134. [CrossRef]
Madyatmadja, E.D.; Aryuni, M. (2014). Comparative study of data mining model for credit card application scoring in bank. J. Theor. Appl. Inf. Technol, 59, 269–274.
 Malekpour, M.; Khademi, M.; Minae-Bidgoli, B. (2014).  A Hybrid Data Mining Method for Intrusion and Fraud Detection in E-Banking Systems. J. Comput. Intell. Electron. Syst, 3, 1–6.
Mansingh, G.; Rao, L.; Osei-Bryson, K.M.; Mills, A. (2015).  Profiling internet banking users: A knowledge discovery in data mining process model-based approach. Inf. Syst. Front, 17, 193–215. [CrossRef]
Marous, J. (2017).  Improving the Customer Experience in Banking. Digital Banking Report. Available online: https://www.digitalbankingreport.com/dbr/dbr246/ (accessed on 8 September 2017).
 Mayer-Schonberger, V.; Cukier, K. Big Data: (2013). A Revolution that Will Transform How We Live, Work, and Think; Houghton Mifflin Harcourt: New York, NY, USA.
Met, I.; Tunali, G.; Erkoc, A.; Tanrikulu, S.; Dolgun, M.O. (2017). Branch Efficiency and Location Forecasting: Application of Ziraat Bank. J. Appl. Financ. Bank., 7, 1–13.
 Mitik, M.; Korkmaz, O.; Karagoz, P.; Toroslu, I.H.; Yucel, F. (2016).  Data Mining Based Product Marketing Technique for Banking Products. In Proceedings of the 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW), Barcelona, Spain, 12–15 December; pp. 552–559.
Mitik, M.; Korkmaz, O.; Karagoz, P.; Toroslu, I.H.; Yucel, F. (2017).  Data Mining Approach for Direct Marketing of Banking Products with Profit/Cost Analysis. Rev. Soc. Strateg, 11, 17–31. [CrossRef]
Moro, S.; Cortez, P.; Rita, P. A data-driven approach to predict the success of bank telemarketing. Decis. Support Syst. 2014, 62, 22–31. [CrossRef]
Negnevitsky, M. (2017).  Identification of failing banks using Clustering with self-organising neural networks. Procedia Comput. Sci, 108, 1327–1333. [CrossRef]
Ngai, E.W.; Xiu, L.; Chau, D.C. (2009). Application of data mining techniques in customer relationship management: A literature review and classification. Expert Syst. Appl, 36, 2592–2602. [CrossRef] Big Data Cogn. Comput. 2018, 2, 18 13 of 13
 Ngai, E.W.T.; Hu, Y.;Wong, Y.H.; Chen, Y.; Sun, X. (2011). The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature. Decis. Support Syst. 2011, 50, 559–569. [CrossRef]
Nishanth, K.J.; Ravi, V. (2013). A computational intelligence based online data imputation method: An application for banking. J. Inf. Process. Syst, 9, 633–650. [CrossRef]
 Noori, B. (2015). An Analysis of Mobile Banking User Behavior Using Customer Segmentation. Int. J. Glob. Bus, 8, 55.
Ogwueleka, F.N.; Misra, S.; Colomo-Palacios, R.; Fernandez, L. (2015). Neural network and classification approach in identifying customer behavior in the banking sector: A case study of an international bank. Hum. Factors Ergonom. Manuf. Serv. Ind, 25, 28–42. [CrossRef]
 Osinski, S.; Stefanowski, J.; Weiss, D. (2004).  Lingo: Search results clustering algorithm based on singular value decomposition. In Intelligent Information Processing and Web Mining; Springer: Berlin/Heidelberg, Germany; pp. 359–368.
Oyeniyi, A.O.; Adeyemo, A.B.; Oyeniyi, A.O.; Adeyemo, A.B. (2015). Customer churn analysis in banking sector using data mining techniques. Afr. J. Comput. ICTs, 8, 165–174.
Pang-Ning, T.; Steinbach, M.; Kumar, V. (2017). Introduction to Data Mining (2ed edition); Pearson: Boston, MA, USA.
 Panigrahi, S.; Kundu, A.; Sural, S.; Majumdar, A.K. (2009). Credit card fraud detection: A fusion approach using Dempster–Shafer theory and Bayesian learning. Inf. Fusion, 10, 354–363. [CrossRef]
Parvatiyar, A.; Sheth, J.N. (2001). Customer relationship management: Emerging practice, process, and discipline. J. Econ. Soc. Res, 3, 1–34.
Patel, Y.S.; Agrawal, D.; Josyula, L.S. (2016). The RFM-based ubiquitous framework for secure and efficient banking. In Proceedings of the 2016 International Conference on Innovation and Challenges in Cyber Security (ICICCS-INBUSH), Noida, India, 3–5 February; pp. 283–288.
Pulakkazhy, S.; Balan, R.V.S. (2013). Data mining in banking and its applications—A review. J. Comput. Sci, 9, 1252–1259. [CrossRef]
Quinlan, J.R. (1992). C4.5: Program for Machine Learning; Morgan Kaufmann: Burlington, MA, USA.
Save, P.; Tiwarekar, P.; Jain, K.N.; Mahyavanshi, N. (2017). A Novel Idea for Credit Card Fraud Detection using Decision Tree. Int. J. Comput. Appl, 161, 6–9. [CrossRef]
 Seeja, K.R.; Zareapoor, M. FraudMiner: (2018). A novel credit card fraud detection model based on frequent itemset mining. Sci. World J. 2014, 2014. [CrossRef] [PubMed] Big Data Cogn. Comput, 2, 18 10 of 13
Serrano-Cinca, C.; Gutiérrez-Nieto, B. (2016). The use of profit scoring as an alternative to credit scoring systems in peer-to-peer (P2P) lending. Decis. Support Syst, 89, 113–122. [CrossRef]
Siami, M.; Hajimohammadi, Z. (2013).  Credit scoring in banks and financial institutions via data mining techniques: A literature review. J. AI Data Min, 1, 119–129.
Soltani, Z.; Navimipour, N.J. (2016).  Customer relationship management mechanisms: A systematic review of the state-of-the-art literature and recommendations for future research. Comput. Hum. Behav, 61, 667–688. [CrossRef]
Sousa, M.D.M.; Figueiredo, R.S. (2014). Credit analysis using data mining: Application in the case of a credit union. J. Inf. Syst. Technol. Manag, 11, 379–396. [CrossRef]
Sun, N.; Morris, J.G.; Xu, J.; Zhu, X.; Xie, M. (2014).  iCARE: A framework for big data-based banking customer analytics. IBM J. Res. Dev, 58, 4:1–4:9. [CrossRef]
Sundarkumar, G.G.; Ravi, V. (2015). A novel hybrid undersampling method for mining unbalanced datasets in banking and insurance. Eng. Appl. Artif. Intell, 37, 368–377. [CrossRef]
 Suvarna, V.K.; Banerjee, B. (2014). Social Banking: Leveraging social media to Enhance Customer Engagement; Capgemini White Paper; Capgemini: Paris, France.
Suykens, J.A.; Vandewalle, J. (1999). Least squares support vector machine classifiers. Neural Process. Lett, 9, 293–300. [CrossRef]
Vajiramedhin, C.; Suebsing, A. (2014).  Feature selection with data balancing for prediction of bank telemarketing. Appl. Math. Sci, 8, 5667–5672. [CrossRef]
 Van Vlasselaer, V.; Bravo, C.; Caelen, O.; Eliassi-Rad, T.; Akoglu, L.; Snoeck, M.; Baesens, B. (2015). APATE: A novel approach for automated credit card transaction fraud detection using network-based extensions. Decis. Support Syst, 75, 38–48. [CrossRef]
Wang, S.; Petrounias, I. (2017). Big Data Analysis on Demographic Characteristics of Chinese Mobile Banking Users. In Proceedings of the 2017 IEEE 19th Conference on Business Informatics (CBI), Thessaloniki, Greece, 24–27 July; Volume 2, pp. 47–54.
Wanke, P.; Azad, A.K.; Emrouznejad, A. (2016).  Efficiency in BRICS banking under data vagueness: A two-stage fuzzy approach. Glob. Financ. J, 35, 58–71. [CrossRef]
Wanke, P.; Azad, M.A.K.; Barros, C.P.; Hassan, M.K. (2016). Predicting efficiency in Islamic banks: An integrated multicriteria decision making (MCDM) approach. J. Int. Financ. Market. Inst. Money, 45, 126–141. [CrossRef]
Wanke, P.; Kalam Azad, M.; Barros, C.P.; Hadi-Vencheh, A. (2016). Predicting performance in ASEAN banks: An integrated fuzzy MCDM–neural network approach. Expert Syst, 33, 213–229. [CrossRef]
 Wei, W.; Li, J.; Cao, L.; Ou, Y.; Chen, J. (2013). Effective detection of sophisticated online banking fraud on extremely imbalanced data. World Wide Web, 16, 449–475. [CrossRef]
Widrow, B.; Rumelhart, D.E.; Lehr, M.A. (1994). Neural networks: Applications in industry, business and science. Commun. ACM, 37, 93–105. [CrossRef]
 Wongchinsri, P.; Kuratach,W. (2016). A survey-data mining frameworks in credit card processing. In Proceedings of the 2016 13th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), ChiangMai, Thailand, 28 June–1 July; pp. 1–6.
Wu, D.D.; Olson, D.L.; Luo, C. (2014). A decision support approach for accounts receivable risk management. IEEE Trans. Syst. Man Cybern. Syst, 44, 1624–1632. [CrossRef]
Xia, Y.; Liu, C.; Li, Y.; Liu, N. (2017). A boosted decision tree approach using Bayesian hyper-parameter optimization for credit scoring. Expert Syst. Appl, 78, 225–241. [CrossRef]
Xiong, T.; Wang, S.; Mayers, A.; Monga, E. (2013).  Personal bankruptcy prediction by mining credit card data. Expert Syst. Appl, 40, 665–676. [CrossRef]
Xu, D.; Tian, Y. (2015). A comprehensive survey of clustering algorithms. Ann. Data Sci, 2, 165–193. [CrossRef]
 Zakaryazad, A.; Duman, E. (2016). A profit-driven Artificial Neural Network (ANN) with applications to fraud detection and direct marketing. Neurocomputing, 175, 121–131. [CrossRef]
Zareapoor, M.; Shamsolmoali, P. (2015). Application of credit card fraud detection: Based on bagging ensemble classifier. Procedia Comput. Sci, 48, 679–685. [CrossRef]
Zhao, Z.; Xu, S.; Kang, B.H.; Kabir, M.M.J.; Liu, Y.; Wasinger, R. (2008). Investigation and improvement of multi-layer perceptron neural networks for credit scoring. Expert Syst. Appl, 42, 3508–3516. [CrossRef] Big